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In this Brief Communication, a new approach to generalize the lattice Boltzmann method to produce
fluid flow consistent with the Brinkman equation is presented. The method described in this
communication both eliminates second order errors in velocity and improves stability over that of
a previously proposed lattice Boltzmann-based model.@DOI: 10.1063/1.1368846#

BRIEF COMMUNICATIONS
The purpose of this Brief Communications section is to present important research results of more limited scope than regular
articles appearing in Physics of Fluids. Submission of material of a peripheral or cursory nature is strongly discouraged. Brief
Communications cannot exceed four printed pages in length, including space allowed for title, figures, tables, references, and an
abstract limited to about 100 words.
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Modeling fluid flow in porous heterogeneous materi
with more than one typical pore size1 ~e.g., concrete, mi-
croporous rocks, and fractured materials! presents a chal
lenge because it is difficult to simultaneously resolve all
microstructural features of the porous medium that are
different length scales. One possible approach is to div
the porous medium into two regions:~1! the larger pores and
~2! homogeneous regions of smaller pores. In the lar
pores, the Stokes’ equations for incompressible flow hold

¹p5m¹2v, ~1!

¹•v50, ~2!

wherep is the pressure,v is the fluid velocity, andm is the
fluid viscosity. Regions with the smaller pores are treated
a permeable medium and flow is described by Darcy’s la

^¹p&52
m

k
^v&, ~3!

wherek is the permeability of the porous medium and^ &
denotes the volume average.

The two boundary conditions to be satisfied at the po
permeable medium interface are continuity of the fluid v
locity and the shear stress.2 Darcy’s law alone is not suffi-
cient to satisfy these boundary conditions. The Brinkm
equation3 is a generalization of Darcy’s law that facilitate
the matching of boundary conditions at an interface betw
the larger pores and the permeable medium. Brinkma
equation is

^¹p&52
m

k
v1me¹

2^v&, ~4!

wherev is the fluid velocity,m is the fluid viscosity, andme

is an effective viscosity parameter. The so-called effect
viscosity should not be thought of as the viscosity of the fl
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but only a parameter that allows for matching of the sh
stress boundary condition across the free-fluid/porous
dium interface. That is, (md^v&/dy(y501)5med^v&/dy(y
502), where y50 specifies the location of the interfac
The 1 and 2 refer to regions in the free-fluid and porou
medium, respectively.

Although the Brinkman equation is semiempirical in n
ture it has been validated by a detailed numerical solution
the Stokes’ equations in regions near the interface betw
dissimilar regions.4 Numerical solution of the Brinkman
equation by more traditional computational methods~e.g.,
finite difference and finite element! is certainly possible.
However, a recent lattice Boltzmann~LB! based model by
Spaid and Phelan5 ~henceforth denoted as model A! has
proven to be a simple and computationally efficient meth
to numerically approximate fluid flow described by th
Brinkman equation. While model A is capable of describi
the more general case ofme /mÞ1, its treatment has alway
assumedme /m51 in the absence of any definitive know
edge about this ratio. However, theoretical studies6 and nu-
merical simulations4 have demonstrated that this limitin
case is only true when the porosity,f→1 and that in reality
me /m increases with solid fraction4,6 for similar classes of
porous media. For example, whenf550%, it was found that
me /m'4 for an overlapping sphere model of porous medi4

Indeed,me /m appeared to be independent of how the flu
flow was driven indicating thatme /m can be thought of as a
material parameter that depends on the pore geome
Therefore, it is important to consider this more general c
when constructing and validating a numerical method to
proximate the Brinkman equation.

To produce flow consistent with the Brinkman equatio
a dissipative forcingF52mv/k was used in model A.5 This
forcing was incorporated into a LB model, normally used
approximate the Navier–Stokes equations, by introducin
7
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velocity shiftDv5tF/n ~t is a relaxation parameter andn is
the density! in the Boltzmann equilibrium distribution ac
cording to the method of Shan and Chen.7 However it is well
known that this approach will produce errors of ordert2F2

in the pressure tensor.8 Such errors can have a significa
impact on the fluid dynamics of such systems.

In this Brief Communication I will describe a lattic
Boltzmann approach to numerically approximate the Brin
man equation~henceforth called model B! allowing for the
case ofme /mÞ1. In contrast to model A,5 I will describe
how to incorporate the dissipative forcing, due to flow in t
porous medium, into alinear body force term so that the
O(t2v2) errors are avoided. Results from numerical simu
tions, validating this approach and providing a comparison
models A and B, will be given.

In the LB method,9–11 a typical volume element of fluid
is described as a collection of particles that are represente
terms of a particle velocity distribution function at each po
in space. The particle velocity distributionni(x,t) is the
number density of particles at nodex, time t, and velocityei ,
where (i 51,...,b) indicates the velocity direction. The tim
is counted in discrete time steps, and the fluid particles
collide with each other as they move under applied forc
For this paper the D3Q19 lattice~three dimensional lattice
with b519!10,11 will be utilized ~the results can be easil
generalized to other lattices!. The microscopic velocityei

equals all permutations of~61,61,0! for 1< i<12, ~61,0,0!
for 13< i<18, and~0,0,0! for i 519. The units ofei are the
lattice constant divided by the time step. Macroscopic qu
tities such as the densityn(x,t) and the fluid velocityv are
obtained by taking suitable moment sums ofni(x,t). Here
n(x,t)5( ini(x,t) and v(x)5( iniei /n(x). In our units, the
molecular massm equals 1.

The time evolution of the particle velocity distributio
function satisfies the following LB equation:

ni~x1ei ,t11!2ni~x,t !5V i~x,t !2gi , ~5!

where V i is the collision operator representing the rate
change of the particle distribution due to collisions andgi is
the body force term. The collision operator can be appro
mated by a BGK scheme9–11

V i~x,t !52
1

t
@ni~x,t !2ni

~eq!~x,t !#, ~6!

whereni
(eq)(x,t) is the equilibrium distribution andt is the

relaxation time that controls the rate of approach to equi
rium. The equilibrium distribution may take the followin
form:10,11

ni
~eq!~x!5t in~x!@113ei "v1 3

2~3eiei :vv2v2!#. ~7!

For this model,t i51/36 for 1< i<12, t i51/18 for 13< i
<18 andt1951/3. It has been shown that the above latt
Boltzmann formalism leads to a velocity field that is a so
tion of the Navier–Stokes equation with the kinematic v
cosity n51

3~t21
2!.

10,11

In the continuum Boltzmann equation, the body for
term is writtena•¹en(x,e), wherea is an acceleration field
due to a body force. A representation8 of this body force
Downloaded 21 Jun 2001 to 129.6.104.142. Redistribution subject to A
-

-
o

in
t

n
s.

-

f

i-

-

-
-

term ~model B!, to second order in Hermite polynomials,
the discrete velocity space of the D3Q19 lattice is

gi523t in~x!@~ei2v!"a13~ei "v!~ei "a!#. ~8!

To first order, the body force term is written asgi5
23t in(x)ei "a. The body force model will henceforth be re
ferred to as model B1 or B2 depending on whether the first o
second order approximation is used, respectively. To mo
the momentum loss in the Brinkman equation we take, a
model A,5 na52mv/k. In addition, the relaxation time to b
used in the permeable medium is taken to bete53(me /n)
1 1

2. In the limit of low Reynolds number, these modific
tions will recover the Brinkman equation with the option
me /mÞ1. Comparison with model A, where the dissipati
forcing is introduced by replacingv with v1tF/n in the
equilibrium distribution function@Eq. ~7!#, it is easily seen
that this substitution creates errors of orderv2 in the particle
distribution function.

To first validate this model, a simple Couette flow g
ometry was used~see Fig. 1!. Starting with a parallel plate
geometry, a permeable medium is positioned such that th
is a gap between the permeable medium and the upper p
The upper plate is given a velocityVw to the right. Analytic
solution of the Brinkman equation predicts a linear veloc
profile in the gap and an exponentially decaying veloc
profile in the porous medium. The rate of decay depends
the value ofAme /m.2,4 In Fig. 1, velocity profiles are com
pared for the case ofme /m54 and the assumption o
me /m51. The solid line is the analytic solution of the Brink
man solution. Clearly, there is excellent agreement betw
simulation and theory and there can be a considerable ch
in the velocity profile whenme /mÞ1. In addition, the lattice
Boltzmann method also does a reasonably good job cap
ing the discontinuity of the gradient of the velocity field
the free-fluid/porous medium interface for the case
me /m54. Note that this is achieved without direct incorp

FIG. 1. Velocity field of a sheared system next to a porous medium.
filled triangles and circles represent data from the lattice Boltzmann si
lation ~me /m51 andme /m54, respectively!. The solid lines are analytic
solutions of the Brinkman equation. The region below the dashed liny
534.5 ~in units of lattice spacing! corresponds to the porous medium. Th
moving wall is aty544.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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ration of the stress boundary condition in the simulati
model.

While model A should, in principle, account for the cas
of me /mÞ1 by settingt5te , it would still suffer from er-
rors in the particle distribution function, which approx
mately scales aste

2(v/k)2. Unfortunately, for many porous
media of interest, this error may be large since, in general
porosity is reduced,me /m becomes larger as permeabilit
decreases.

As a simple test comparing models A and B, the case
fluid flow in a one dimensional homogeneous porous m
dium was studied. Here, a pressure drop was applied at
posite ends of the porous medium and the fluid flow w
numerically determined throughout the system. For this t
case,k51/11 in units of lattice spacing squared. Such
choice ofk, ignoring tortuosity effects, corresponds to a p
rous medium with a typical pore size of an order of lattic
spacing as can be seen by noting that the permeability a
ciated with a cylindrical tube isk5r 2/8, wherer is the tube
radius. When using this flow geometry, the solution
Brinkman’s equation recovers Darcy’s law. Figure 2 com
pares predictions of flow velocities from models A, B1 , and
B2 . Shown is the percent error,~PE! in the solution, defined
as PE5u(Vs2Vt)/Vtu, whereVs is the fluid velocity deter-
mined from the simulation andVt is the theoretical predic-
tion. It should be pointed out that, for this scenario, the s
lution of the Brinkman equation will not depend onte since
the effective viscosity does not play a role in Darcy flow
From Fig. 2, it can be clearly seen that the error in mode
scales asF2;te

2v2 as described earlier. Model B2 has a
weaker dependence onte , roughly scaling astev

2. In con-
trast, model B1 was insensitive to the values ofte tested
(1<te<100). To better understand these discrepanc
note that a Chapman–Enskog12 analysis of the lattice Boltz-
mann BGK model, with body force, shows there is an ad
tional correction to the single particle distribution functio

FIG. 2. Percent error in solution vs velocity. Data are shown for the case
te55 ~3! andte510 ~circles! for model A, te5100 ~triangles! for model
B1 and te55 for model B2 ~squares!. The solid lines correspond to the
function av2 wherea is a constant chosen to help guide the eye. Where
data for model A is shown to compare to model B, model A was eith
unstable or the resulting velocity field oscillated so that no reasonable s
tion was obtained. Data~not shown! were also obtained for model B2 with
te510 and found to lie slightly below that shown forte55 model A.
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that scales astevF, i.e., ni'neq1n11..., where n1

;tevF plus the usual viscous corrections.12 Since, in lattice
Boltzmann methods, the pressure tensor is determined f
the moment(eieini , it is easy to show that contribution
from the body force to this moment sum is zero for model1

but produces a correction that scales astev
2 for model B2 .

Careful inspection of model A shows that the same corr
tion (;tevF) appears in model A~in addition to thete

2F2

correction!.
Another interesting point is that model A was found

be numerically unstable at higher velocities shown in Fig.
In this velocity regime, errors were found to be appro
mately 1%–2% for model B1 . Of course it should be pointed
out that, due the second order nature of the error obtai
using model A, these discrepancies can be significantly
duced by makingv smaller or takingt and te as close as
possible to the theoretical stability limit oft51

2 for the lattice
Boltzmann method. So while model A is still viable fo
many applications, care must be taken in choosing appro
ate parameters for simulations. The two main advantage
model B over model A are: first, one need not be limited
a smaller range of parameter space and second, if the m
eler needs to incorporate additional forces in a simulation
certain obfuscation of the physics can be avoided. Since
model A forces are introduced by shifting the velocity in t
equilibrium distribution, additional unphysical terms ma
arise. For example, if one takesF5F11F2 ..., where theFi

corresponds to different forces, theF2 error obtained pro-
duces terms likeFiF j which do not have a physical basi
This is completely avoided if the forces are introduced in
linear fashion as in model B.

In conclusion, a lattice Boltzmann model for numeric
solution of the Brinkman equation is presented that can
scribe the general case ofme /mÞ1 and eliminate the secon
order errors of a previous proposed model.5 Indeed, incorpo-
ration of the dissipative forcing into a linear body force ter
extends the validity of this Brinkman approach over a larg
range of forcing and effective viscosity. It should also im
prove numerical accuracy of flow simulations for other a
plications~Brinkman and non-Brinkman! including: dynami-
cal simulations, linearly driven systems such as that
electromotive forces, and fluid mixtures.
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